2,493 research outputs found

    A combinatorial approach to angiosperm pollen morphology

    Get PDF
    Angiosperms (flowering plants) are strikingly diverse. This is clearly expressed in the morphology of their pollen grains, which are characterized by enormous variety in their shape and patterning. In this paper, I approach angiosperm pollen morphology from the perspective of enumerative combinatorics. This involves generating angiosperm pollen morphotypes by algorithmically combining character states and enumerating the results of these combinations. I use this approach to generate 3 643 200 pollen morphotypes, which I visualize using a parallel-coordinates plot. This represents a raw morphospace. To compare real-world and theoretical morphologies, I map the pollen of 1008 species of Neotropical angiosperms growing on Barro Colorado Island (BCI), Panama, onto this raw morphospace. This highlights that, in addition to their well-documented taxonomic diversity, Neotropical rainforests also represent an enormous reservoir of morphological diversity. Angiosperm pollen morphospace at BCI has been filled mostly by pollen morphotypes that are unique to single plant species. Repetition of pollen morphotypes among higher taxa at BCI reflects both constraint and convergence. This combinatorial approach to morphology addresses the complexity that results from large numbers of discrete character combinations and could be employed in any situation where organismal form can be captured by discrete morphological characters

    Developmental Symbiosis Facilitates The Multiple Origins Of Herbivory

    Get PDF
    Developmental bias toward particular evolutionary trajectories can be facilitated through symbiosis. Organisms are holobionts, consisting of zygote‐derived cells and a consortia of microbes, and the development, physiology, and immunity of animals are properties of complex interactions between the zygote‐derived cells and microbial symbionts. Such symbionts can be agents of developmental plasticity, allowing an organism to develop in particular directions. This plasticity can lead to genetic assimilation either through the incorporation of microbial genes into host genomes or through the direct maternal transmission of the microbes. Such plasticity can lead to niche construction, enabling the microbes to remodel host anatomy and/or physiology. In this article, I will focus on the ability of symbionts to bias development toward the evolution of herbivory. I will posit that the behavioral and morphological manifestations of herbivorous phenotypes must be preceded by the successful establishment of a community of symbiotic microbes that can digest cell walls and detoxify plant poisons. The ability of holobionts to digest plant materials can range from being a plastic trait, dependent on the transient incorporation of environmental microbes, to becoming a heritable trait of the holobiont organism, transmitted through the maternal propagation of symbionts or their genes

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    A niche perspective on the range expansion of symbionts

    Get PDF
    Range expansion results from complex eco-evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free-living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche-driven and dispersal-driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host-mediated dispersal, although the requirement for among-host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off-host environmental gradients during host-mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.info:eu-repo/semantics/publishedVersio

    Multi-locus approaches for the measurement of selection on correlated genetic loci

    Get PDF
    The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g., survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e., inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p ≫ n). We present simulations examining the utility of whole genome regression approaches (i.e., Bayesian sparse linear mixed models) for quantifying direct selection in cases where p ≫ n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild, and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences

    Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance

    Get PDF
    Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect's oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles

    Bayesian estimates of linkage disequilibrium

    Get PDF
    [Background] The maximum likelihood estimator of D' – a standard measure of linkage disequilibrium – is biased toward disequilibrium, and the bias is particularly evident in small samples and rare haplotypes. [Results] This paper proposes a Bayesian estimation of D' to address this problem. The reduction of the bias is achieved by using a prior distribution on the pair-wise associations between single nucleotide polymorphisms (SNP)s that increases the likelihood of equilibrium with increasing physical distances between pairs of SNPs. We show how to compute the Bayesian estimate using a stochastic estimation based on MCMC methods, and also propose a numerical approximation to the Bayesian estimates that can be used to estimate patterns of LD in large datasets of SNPs. [Conclusion] Our Bayesian estimator of D' corrects the bias toward disequilibrium that affects the maximum likelihood estimator. A consequence of this feature is a more objective view about the extent of linkage disequilibrium in the human genome, and a more realistic number of tagging SNPs to fully exploit the power of genome wide association studies.Research supported by NIH/NHLBI grant R21 HL080463-01, NIH/NIDDK 1R01DK069646-01A1 and the Spanish research program [projects TIN2004-06204-C03-02 and TIN2005-02516]

    Two Planets, One Species: Does a Mission to Mars Alter the Balance in Favour of Human Enhancement?

    Get PDF
    In this chapter we examine the implications of a crewed mission to Mars, possible colonisation of the planet, and the wider implications this may have on genetic enhancement in both a terrestrial and space context. We consider the usage of both somatic and germ-line genetic engineering, and its potential impact on the evolution of Homo sapiens. We acknowledge that a mission to Mars may require the usage of such technologies if it is to be successful. Our investigation suggests that the use of such technologies might ultimately be linked with the transformation of our own species. We also consider projected timescales for the development of these genetic enhancements and the ethical questions raised by the possibility of speciation. Cooperation among spacefaring nations in this context and the development of norms for the use of such technologies is desirable

    Learning From Early Attempts to Generalize Darwinian Principles to Social Evolution

    Get PDF
    Copyright University of Hertfordshire & author.Evolutionary psychology places the human psyche in the context of evolution, and addresses the Darwinian processes involved, particularly at the level of genetic evolution. A logically separate and potentially complementary argument is to consider the application of Darwinian principles not only to genes but also to social entities and processes. This idea of extending Darwinian principles was suggested by Darwin himself. Attempts to do this appeared as early as the 1870s and proliferated until the early twentieth century. But such ideas remained dormant in the social sciences from the 1920s until after the Second World War. Some lessons can be learned from this earlier period, particularly concerning the problem of specifying the social units of selection or replication
    • 

    corecore